El niño que realizó este cálculo fue Carl Friedrich Gauss
En el siguiente fragmento de la película alemana “Midiendo el mundo” (“Die Vermessung der Welt”) se recrea la escena de aquella clase de Aritmética.
¿Sabes para qué nos puede servir estimar una suma?
Cuando tenemos que hacer una operación mentalmente, muchas veces no necesitamos el resultado exacto sino que nos vale con una estimación o redondeo del resultado.Otras veces, cuando hemos hecho una operación en papel y queremos comprobar que la cantidad que nos ha salido es razonable, también nos basta con hacer una estimación del resultado.
Muchas familias nos comentaron en nuestra encuesta que les es muy útil estas estrategias.
Es bastante útil, ¿verdad? Estamos aprendiendo algunos pasos muy sencillos para aprender a estimar una suma.
Cuando hablamos de aproximación (redondeo de un número) tenemos que tener en cuenta dos cosas:
1. A qué valor tenemos que aproximarnos. No es lo mismo que me pidan a la decena más próxima que a la centena más próxima por ejemplo.
2. Una vez me situo en la cifra que me piden debo observar los números que hay a mi derecha.
¡A COMENZAR!
Estimar una suma a la decena
Para estimar una suma a la decena debemos dar 3 pasos:
PASO 1: Redondeamos los sumandos a la decena más cercana. Recuerda:
– Si el número termina en 0, 1, 2, 3 o 4, lo redondearemos hacia abajo estimar una suma imag 1
– Si el número termina en 5, 6, 7, 8 o 9, lo redondearemos hacia arriba estimar una suma imag 2
PASO 2: Sumamos los números redondeados
PASO 3: Nos fijamos en la cantidad total de redondeo. Pueden ocurrir tres cosas:
– Si un sumando lo hemos redondeado hacia arriba y otro hacia abajo, la suma que hemos obtenido es la estimación correcta
– Si hemos redondeado ambos sumandos hacia arriba y la cantidad de redondeo es mayor que 5, debemos restar 10 a la estimación
– Si hemos redondeado ambos sumandos hacia abajo y la cantidad de redondeo es mayor que 5, debemos sumar 10 a la estimación
ESTIMAR SUMAS A LA CENTENA
ESTIMAR SUMAS A LA UNIDAD DE MIL
Observar
REDONDEAR NÚMEROS Y UBICAR EN LA RECTA NUMÉRICA
Aproximar un número a la unidad de mil más cercana para poder ubicarlo en la recta numérica.5.828 está entre 5.800 y 5.900
Se ubica más cerca del 5.800
Otro ejemplo:
Recuerda que en nuestro manual hemos realizado más ejercitación del tema.
¡A ENTRENARNOS!
Enlace: EJERCITACIÓN 1
ENLACE: EJERCITACIÓN 2
ENLACE: EJERCITACIÓN 4
ENLACE: EJERCITACIÓN 5
ENLACE: EJERCITACIÓN 6
ENLACE: EJERCITACIÓN 7
ENLACE: EJERCITACIÓN 8
ENLACE: EJERCITACIÓN 9
Multiplicamos y dividimos por 10, 100 y 1.000
Recuerda que en el manual de Matemática en la unidad I y II estuvimos viendo el tema.
¡A ENTRENARNOS!
Enlace: EJERCITACIÓN 1
Enlace EJERCITACIÓN 2
Enlace: EJERCITACIÓN 3
No hay comentarios.:
Publicar un comentario
Puedes dejar tu comentario aquí...